If it's not what You are looking for type in the equation solver your own equation and let us solve it.
7x^2+6-209=0
We add all the numbers together, and all the variables
7x^2-203=0
a = 7; b = 0; c = -203;
Δ = b2-4ac
Δ = 02-4·7·(-203)
Δ = 5684
The delta value is higher than zero, so the equation has two solutions
We use following formulas to calculate our solutions:$x_{1}=\frac{-b-\sqrt{\Delta}}{2a}$$x_{2}=\frac{-b+\sqrt{\Delta}}{2a}$
The end solution:
$\sqrt{\Delta}=\sqrt{5684}=\sqrt{196*29}=\sqrt{196}*\sqrt{29}=14\sqrt{29}$$x_{1}=\frac{-b-\sqrt{\Delta}}{2a}=\frac{-(0)-14\sqrt{29}}{2*7}=\frac{0-14\sqrt{29}}{14} =-\frac{14\sqrt{29}}{14} =-\sqrt{29} $$x_{2}=\frac{-b+\sqrt{\Delta}}{2a}=\frac{-(0)+14\sqrt{29}}{2*7}=\frac{0+14\sqrt{29}}{14} =\frac{14\sqrt{29}}{14} =\sqrt{29} $
| j+819=212 | | c+783=796 | | 28=7j | | 3*a=a*a*a | | 12+x=x+12+8 | | f-36=23 | | 3a=a^# | | 11x-6=7x=10 | | -4u=-52 | | 3x^2-58x-50=0 | | t+65=15 | | 24n^2-16=0 | | 3x^2-72x+32=0 | | 9=g/9 | | 6.5(2x+6)=247 | | k+862=-136 | | 80=x/3600 | | 4(3x-7)+5=16 | | 4(2.25x+9)=108 | | u-43=3 | | k+13=-29 | | 6x-24/5=24 | | r-41=13 | | 10x+40/2=20 | | -9=w-56 | | -9w+-6w=15 | | 7x+3-4x=57 | | f+69=-28 | | 4(x-3)-15=-51 | | -49=-7g | | -4x/5-3=-19 | | 6=-0.016x^2+0.5x+4.5 |